Too much vitamin A may increase risk of bone fractures

Consuming too much vitamin A may decrease bone thickness, leading to weak and fracture prone bones, according to a study published in the Journal of Endocrinology. The study, undertaken in mice, found that sustained intake of vitamin A, at levels equivalent to 4.5-13 times the human recommended daily allowance (RDA), caused significant weakening of the bones, and suggests that people should be cautious of over-supplementing vitamin A in their diets.

Consuming too much vitamin A may decrease bone thickness, leading to weak and fracture prone bones, according to a study published in the Journal of Endocrinology. The study, undertaken in mice, found that sustained intake of vitamin A, at levels equivalent to 4.5-13 times the human recommended daily allowance (RDA), caused significant weakening of the bones, and suggests that people should be cautious of over-supplementing vitamin A in their diets.

Vitamin A is an essential vitamin that is important for numerous biological processes including growth, vision, immunity and organ function.  Our bodies are unable to make vitamin A but a healthy diet including meat, dairy products and vegetables should be sufficient to maintain the body’s nutritional needs. Some evidence has suggested that people who take vitamin A supplements may be increasing their risk of bone damage. Previous studies in mice have shown that short-term overdosing of vitamin A, at the equivalent of 13-142 times the recommended daily allowance in people, results in decreased bone thickness and an increased fracture risk after just 1-2 weeks. This study is the first to examine the effects of lower vitamin A doses that are more equivalent to those consumed by people taking supplements, over longer time-periods. 

In this study, Dr Ulf Lerner and colleagues from Sahlgrenska Academy at the University of Gothenburg, report that mice given lower doses of vitamin A, equivalent to 4.5-13 times the RDA in humans, over a longer time period, also showed thinning of their bones after just 8 days, which progressed over the ten week study period.

Dr Ulf Lerner commented, “Previous studies in rodents have shown that vitamin A decreases bone thickness but these studies were performed with very high doses of vitamin A, over a short period of time. In our study we have shown that much lower concentrations of vitamin A, a range more relevant for humans, still decreases rodent bone thickness and strength.”

Next, Dr Ulf Lerner intends to investigate if human-relevant doses of vitamin A affect bone growth induced by exercise, which was not addressed in this study. Additionally, his team will study the effects of vitamin A supplementation in older mice, where growth of the skeleton has ceased, as is seen in the elderly.

Dr Ulf Lerner cautions: “Overconsumption of vitamin A may be an increasing problem as many more people now take vitamin supplements. Overdose of vitamin A could be increasing the risk of bone weakening disorders in humans but more studies are needed to investigate this. In the majority of cases, a balanced diet is perfectly sufficient to maintain the body’s nutritional needs for vitamin A.”

-----ENDS-----

 Notes for Editors

The study “Too much vitamin A may increase risk of bone fractures ” was published in the Journal of Endocrinology on 1 October 2018.

The European Journal of Endocrinology (EJE) is the official clinical journal of the European Society of Endocrinology, publishing high-quality original research and review articles on all aspects of clinical and translational endocrinology from around the globe. European Journal of Endocrinology is published by Bioscientifica.

At the European Society of Endocrinology (ESE), we are working together to develop and share the best knowledge in endocrine science and medicine. ESE represents a community of over 20,000 European endocrinologists, enabling us to inform policy makers on health decisions at the highest level through engagement in advocacy efforts across Europe. It is by uniting and representing every part of the endocrine community that we are placed in the best possible position to improve life for the patient.